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Abstract. One-dimensional systems generated by deterministic rules show interesting
properties, such as a structure factor with peaks whose amplitudes scale with the size of
the system according to a power law, with a scaling exponent in general dependent on the
wavevector. I apply a wavelet transform to the structure factor of the Thue–Morse and the period-
doubling chains and show how this technique succeeds in computing the scaling exponents and
in finding the wavevector associated with them. This example shows that wavelet analysis could
become an efficient tool for studying the Fourier transform of aperiodic systems.

1. Introduction

In recent years much effort has been devoted to the analysis of one-dimensional tilings
generated by substitutional rules operating on a finite alphabet [1]: in fact, since they
present a long-range non-periodic order, their study is a first step toward the comprehension
of the properties of two- and three-dimensional aperiodic structures. I concentrate here on
two of these one-dimensional systems, the Thue–Morse and the period-doubling chains, and
use the wavelet transform technique to study some of their properties. Following [2, 3], I
define the structure factor of a chain as

SN(q) = 1

N
|GN(q)|2 = 1

N

∣∣∣∣N−1∑
k=0

eiqxk

∣∣∣∣2

wherexk is the position of thekth atom andN is the number of atoms. When the chain
becomes infinite, a well-defined function is the integrated densityH(q) [4]

H(q) = lim
N→∞

∫ q

0
SN(q ′) dq ′

while the structure factor is formally defined by dH(q) = S(q) dq. The behaviour of these
quantities reflects the nature of the order (disorder) shown by the chain: the averaged
structure factor of an amorphous system is a smooth function, practically independent of
N , whereas, when there is a long-range order, some sharp peaks appear, whose amplitudes
depend on the size of the system according to a power law

GN(q̃) ' C(q̃)Nγ (q̃).

Bragg peaks, corresponding toγ = 1, characterize periodic, quasiperiodic and almost-
periodic systems [5] (pure point spectrum), while in aperiodic structures the exponentγ

takes a value intermediate between 1/2 and 1, depending on the pointq̃ of the reciprocal
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space [4, 6] (singular continuous spectrum). The behaviour of the integrated density around
these particular points may be expressed as [4, 7]

|H(q) − H(q̃)| ' ±C±|q − q̃|α(q̃) (1)

where the scaling indicesα = 2(1−γ ), 0 < α < 1, for differentq̃, are distributed according
to a certain density functionf (α) [4, 8]. The same description is used for an object with
multifractal properties: in [8] the authors, using the technique of multifractal analysis [9, 10]
in reciprocal space, have studied the global scaling properties of the Fourier transform of
some self-similar structures (the period-doubling chain was not included). Although this
kind of analysis is very powerful in detecting the scaling indices, it is not suitable for
localizing the points in the reciprocal space with which they are associated. In order to get
this information I use the wavelet transform analysis [11, 12, 13], which is able to detect
local singularities because it is a scale-independent method based on localized functions. It
was introduced by Morlet (see [14]) to analyse seismic data and it has since been applied to
many different fields. In particular, the authors of [15, 16, 17] and, very recently, [18] have
shown how to use it to describe uniform fractals and multifractals. Using as the analysing
wavelet the so-called ‘Mexican hat’ [15]

h(x) = (1 − x2)e−x2/2 (2)

I apply the wavelet transform to the functionSN(q) and obtain

T (s, u) = lim
N→∞

1

s

∫ +∞

−∞
h
(q − u

s

)
SN(q) dq. (3)

When s → 0+ (u constant), the Mexican hat becomes more and more localized at the
point u, and if here the integrated density presents a singularity with scaling coefficientα,
then [17]

T (λs, u) ' λα(u)−1T (s, u). (4)

From this expression, we can see that the slope of ln
∣∣T (s, u)

∣∣ as a function of lns gives the
coefficientβ = α − 1. A rigorous theorem about the wavelet transform of a measure and
its local scaling exponents is given in [19], but for my purpose the relation (4) is sufficient.

2. The structure factor

2.1. The Thue–Morse chain

Let us consider the following constant length substitution acting on two letters A and B:

σT M =
{

A ⇒ AB
B ⇒ BA.

The wordw obtained by iteratingσ infinitely starting from A is the Thue–Morse sequence.
It represents a fixed point of this substitution, sinceσ(w) = w. The one-dimensional
geometrical structure associated with this abstract sequence is the Thue–Morse chain,
whose properties have been extensively studied by several authors (see, for example,
[20, 21, 22, 23]). The Fourier spectrum of the sequence is singular continuous and its
peaks are characterized by a set of scaling exponentsα ranging fromαmin to ∞ [6, 21].
Since the structure factor of the Thue–Morse chain has already been described in [3], I
report here only its main features. Thenth-generation chain hasN = 2n atoms, its length
is Ln = 2n−1(a + b) and its Fourier transform is given by

Gn(q) = 2n−1e[i(q/2)(a+b)(2n−1−1)]
(
5+f1 − (−i)n5−f2

)
(5)
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where

5+(q) =
n−2∏
j=0

cos[2j−1q(a + b)] (6)

5−(q) =
n−2∏
j=0

sin[2j−1q(a + b)] (7)

f1(q) = ei(q/2)a cos
(q

2
a
)

+ ei(q/2)b cos
(q

2
b
)

(8)

f2(q) = ei(q/2)a sin
(q

2
a
)

− ei(q/2)b sin
(q

2
b
)
. (9)

Equation (6) can be rewritten in the form

5+(q) = 2−(n−1) sin[2n−1(q/2)(a + b)]

sin[(q/2)(a + b)]

from which I can deduce that the points

qM = 2π

a + b
M

whereM is an integer correspond to Bragg peaks with

C(qM) = (−1)M cos2(φM) φM = πa

a + b
M.

WhenN becomes large, the value of this product decreases rapidly and its contribution to
the whole Fourier transform is important only at the pointsqM . The other product,5−,
is the same as the one which appears in the structure factor of the abstract Thue–Morse
sequence and it is responsible for the singular continuous aspect ofSN . There are singular
peaks at each rational, non-dyadic value ofq(a + b), in units of 2π . The smallest scaling
exponentαmin is associated with the pointqmin = (2π/3)/(a + b):

αmin = 2 − ln 3

ln 2
≈ 0.415.

If at the wavevector̃q there is a peak with scaling exponentα̃, the same exponent is found
at wavevectorsq = 2−P (q̃ + 2πQ), with P, Q integers.

2.2. The period-doubling chain

The period-doubling sequence is defined as the fixed point (starting from A) of the binary
constant-length substitution:

σPD =
{

A ⇒ AB
B ⇒ AA .

This abstract sequence is almost periodic, as the calculation of its Fourier transform reported
in [6] shows. In order to calculate the structure factor of the corresponding one-dimensional
chain, I observe that for oddk

xk = xk−1 + a (10)

wherexk is the position of thekth atom on the line. Thus, the Fourier transformGn(q; a, b)

of the nth generation (N = 2n) of the period-doubling chain with periodsa andb can be
decomposed as follows:

Gn(q; a, b) =
∑
k even

eiqxk +
∑
k odd

eiqxk = (1 + eiqa)Gn−1(q; a′ = a + b, b′ = 2a). (11)
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Figure 1. The structure factor of the 10th Thue–Morse generation witha = 1/4 andb = 3/4
as a function of the wavevectorq. The inset shows the trifurcation structure of the peaks.

Iterating (11) gives

Gn(q; a, b) =
n−1∏
m=0

(
1 + eiqym

)
(12)

with the definitions ym = 2mp1 − (−1)mp2

p1 = (2a + b)/3
p2 = (b − a)/3.

The quantityp1 represents the mean interatomic distance defined as [2]

lim
k→∞

xk

k
.

The quantity I have calledym is simply the length of themth period-doubling chain
generation. It is easy to rewrite the expression (12) in a more opportune way and to
obtain for the modulus of the Fourier transform

|Gn(q)| = 2n
n−1∏
m=0

∣∣∣cos
(q

2
ym

)∣∣∣. (13)

The behaviour of this function whenn tends to infinity is not trivial. For generic values
of the wavevectorq, I expect the Fourier transform to have a complex behaviour. I am
interested in the presence of peaks in the structure factor, so I look for those wavevectors
which realize a constructive interference among the factors of the product. There is a Bragg
peak at the point̃q (besides the trivial Bragg peak atq = 0) if

q̃

2
ym → 0 (modπ) (14)
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Figure 2. The wavelet transform of the structure factor of the 10th Thue–Morse generation, for
four different values of the scale parameters.

whenm → ∞. This is possible if the ratioa/b between the two main periods of the chain
takes a rational value [3]. With regard to singular peaks the condition (14) becomes

q̃

2
ym → ±δ (modπ). (15)

For instance, if∣∣∣cos
( q̃

2
ym

)∣∣∣ = | cosδ| = K(q̃)

(K independent ofm) for everym larger than some integer̃m, then

Sn(q̃) ' (2K2)n (n → ∞). (16)

For K = 1 this reduces to (14), while if 1/
√

2 < K < 1 a singular peak results and the
scaling exponent is given by

γ (q̃) = 1 + ln K(q̃)

ln 2
. (17)

This happens, for example, at the pointsq (L andJ integers,L > 0):

q = 2π

p1
J2−L

where

γL,J = 1 + ln(| cos(πJp2/2Lp1|)
ln 2

.
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If a = 5 andb = 6 (p1 = 16/3 andp2 = 1/3), I expect, besides the trivial Bragg peak at
q = 2π , a singular peak forq = 3

4π with scaling indexγ0,2 ≈ 0.886 (α ≈ 0.228) and one
for q = 3

8π with γ0,1 ≈ 0.972 (α ≈ 0.056).

Figure 3. Maxima lines for the 12th Thue–Morse generation witha = 1/4 andb = 3/4 (a) and
maxima lines for the 12th period-doubling generation witha = 5 andb = 6 (b).

3. The wavelet analysis

Figure 1 shows the structure factor of a 10th-generation Thue–Morse chain (for simplicity
I have chosen the values of the intervalsa = 0.25 andb = 0.75 so thata + b = 1).
Besides the two Bragg peaks at the pointsq = 0 andq = 2π (corresponding, respectively,
to M = 0 andM = 1), there is a system of peaks densely distributed on theq-axis with
an interesting trifurcation structure (see also the inset), which also appears in the study
of other aspects of this chain [24, 25]. The wavelet transform of the structure factor is
shown for four different values of the scale parameter in figure 2, where, in each box,s is
kept constant: fors = 1/2 the wavelet transform possesses only two large maxima at the
pointsu ' 4.2 andu ' 2.2. An increasing number of maxima appear when I investigate
smaller values of the scaling parameter. In particular, the position of the local maxima of
the wavelet modulus is of great interest, because, as shown in [26], each singular point
of the measure corresponds to a maximum in the modulus of the wavelet transform [27]
(there are, however, some extra maxima which do not correspond to any singular points).
All the points (umax(s), s) lie on curves called maxima lines: by following these lines for
s → 0 I am able to locate the singularities. Figure 3(a) shows these maxima lines in the
(u, ln s) half-plane for the Thue–Morse chain. Whens → 0, the centres of the two main
maxima fors = 1/2 approachu = 2π/3 andu = 4π/3, which are singular points for the
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Figure 4. The log of the wavelet transform of the structure factor of the 12th Thue–Morse
generation (a = 1/4 and b = 3/4) as a function of lns, for three different values of the
translation parameteru. Full curve: wavelet transform; broken curve: theoretical prediction.

Thue–Morse chain structure factor. The corresponding scaling exponents can be compared
with those obtained by a direct computation. The results, forn = 12, are presented in
figure 4, where the continuous line corresponds to the wavelet transform, while the dashed
line is the theoretical prediction

α = 0.415→ β = α − 1 = −0.585.

A least-squares fit of the wavelet data givesβ ' −0.58 for bothu = 4π/3 andu = 2π/3.
The wavelet transform displays a linear trend which follows the dashed line quite well and
indicates a good correspondence between the wavelet results and those from theory. This
proves the ability of our wavelet to provide a quantitative estimate of the scaling indices.
The result is also shown for the Bragg peak atq = 2π , where the exponentα is zero and
β = −1.

The same kind of computation has been made for the period-doubling chain. Fora = 5,
b = 6 andn = 12, figure 5 shows the graph of ln|T (s)| versus lns, whenu = 3π/8 and
u = 3π/4. In this case too, the wavelet result (continuous line) agrees with the theoretical
analysis. Least-squares fitting givesβ ' −0.92 andβ ' −0.76, respectively, foru = 3π/8
andu = 3π/4. The maxima lines are shown in figure 3(b).

4. Conclusion

The main aim of this paper is to show that the wavelet transform can be used to study the
multifractal properties of the structure factor of self-similar chains. This tool is able to give
local information which cannot be obtained by classical multifractal analysis, because of
the global nature of the latter. This work concentrates on two one-dimensional systems and
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Figure 5. On the right: the structure factor of the 12th period-doubling generation witha = 5
andb = 6 as a function of the wavevectorq. On the left: the log of the wavelet transform of
the structure factor as a function of lns, for two different values of the translation parameteru.
Full curve: wavelet transform; broken curve: theoretical prediction.

I have compared the analytical results with the performance of the wavelet transform. The
Thue–Morse chain was chosen because of its remarkable self-similar structure and because
it has been intensively studied by other authors [2, 3, 6, 8, 21] both analytically and by
multifractal analysis. In particular, the lowest scaling exponent and the corresponding set
of wavevectors are known, so this chain is a good example on which to test the predictions
of the wavelet analysis.

The structure factor of the period-doubling chain has been calculated and some of its
properties have been discussed. I have also calculated some scaling exponents corresponding
to particular values of the wavevectorq (to determine the whole range of scaling exponents
needs multifractal analysis). The wavelet transform method in section 3 fully confirmed
these calculations. Thus, in this second example, wavelet analysis has been found useful
for verifying new theoretical predictions. Figures 4 and 5 show the power of this technique
in giving local information.

It may be concluded that a fairly complete and exhaustive knowledge about the
multifractal properties of the structure factor of one-dimensional aperiodic structures can be
reached by using wavelet analysis to extract local features on the one hand, and multifractal
analysis to obtain a global view on the other.
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